

Curriculum Vita November 2025

Instructor: Mohamed Komaki, Associate Professor

Academic Department: Management, Marketing, and Management Science

University Address: Management, Marketing, and Management Science
McDowell Administration Building,
East Texas A&M University
PO Box 3011
Commerce, TX 75429-3011

Office Phone: 903-886-5692

University Email Address: mohamed.komaki@etamu.edu

EDUCATION

- Doctor of Philosophy, Case Western Reserve University, Systems Engineering, 2018
- M.S., Mazandaran University of Science and Technology, Industrial Engineering, 2010
- B.S., Mazandaran University of Science and Technology, Industrial Engineering, 2007

TEACHING EXPERIENCE

- September 2023 - Present, Associate Professor, East Texas A&M University
- January, 2018 - August, 2023, Assistant Professor, East Texas A&M University

PUBLICATIONS

- Komaki, M., & Myers, C. (2024). *Corporate Social Responsibility Analyzing Revelations and Business Models: Understanding the Performance Gap*. *International Journal of Business and Emerging Markets*.
- Malakooti, B., Komaki, M., & Al-Najjar, C. (2021). Special Geometric Dispersion Theory of Decision Making Under Risk: Analysis of Asymmetric, Relativity, and New Predictable Empirical Behaviors. *Decision Analysis*, 18 (1), 41-77.
- Sheikh, S., Komaki, M., Kayvanfar, V., & Teymorian, E. (2019). Multi-Stage Assembly Flow Shop with Setup Time and Release Time. *Operations Research Perspectives*, 6, 100111.
- Komaki, M., Sheikh, S., & Malakooti, B. (2019). Flow shop scheduling problems with assembly operations: A brief review and new trends. *International Journal of Production Research*, 57 (10), 2926-2955.
- Sheikh, S., Komaki, M., & Kayvanfar, V. (2018). Multi-objective two-stage assembly flow shop with release time. *Computers and Industrial Engineering*, 124, 276-292.
- Malakooti, B. Komaki, M. (2017), Special Geometric Dispersion Theory of Decision Making Under Risk; *Decision Analysis*, .

- Komaki, M., Malakooti, B. (2017), General Variable Neighborhood search algorithm to minimize makespan of the distributed no-wait flow shop scheduling problem, *Production Engineering Research & Development*, 11, 315-329.
- Komaki, M., Teymourian, E., & Kayvanfar, V. (2017) Improved Discrete Cuckoo Optimization Algorithm for the three stage assembly flowshop scheduling problem, *Computer & Industrial Engineering*, 105, 158-173.
- Teymourian, E., Kayvanfar, V., Komaki, M. (2016). An enhanced intelligent water drops algorithm for scheduling of an agile manufacturing system, *International Journal of Information Technology and Decision Making*, 15(2), 239-266.
- Komaki, M., Teymourian, E., Kayvanfar, V. (2016). Minimising makespan in the two-stage assembly hybrid flow shop scheduling problem using artificial immune systems, *International Journal of Production Research*, 54(4), 963-983.
- S. Sheikh, M. Komaki, B. Malakooti, (2015). Integrated Risk and Multi-Objective Optimization of Energy Systems, *Computers & Industrial Engineering*, 90, 1-11.
- Komaki, M., Kayvanfar, V. (2015). Grey Wolf Optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time, *Journal of Computational Science*, 8, 109-120.
- Sheikh, S., Komaki, M., Malakooti, B. (2014). Multiple objective energy operation problem using Z utility theory, *The International Journal of Advanced Manufacturing Technology*, 74(9-12), 1303-1321.
- Kayvanfar, V., Komaki, M., Aalaei, A., Zandieh, M. (2014). Minimizing total tardiness and earliness on unrelated parallel machines with controllable processing times, *Computers & Operations Research*, 41, 31-43.
- Kayvanfar, V., Mahdavi, I., Komaki, M. (2013). A drastic hybrid heuristic algorithm to approach to JIT policy considering controllable processing times. *The International Journal of Advanced Manufacturing Technology*, 69(1-4), 257-267.
- Kayvanfar, V., Mahdavi, I., Komaki, M. (2013). Single machine scheduling with controllable processing times to minimize total tardiness and earliness, *Computers & Industrial Engineering*, 65(1), 166-175